ARTICULATION AGREEMENT BETWEEN
C-TEC ROBOTICS AND AUTOMATED MANUFACTURING PROGRAM
AND
CENTRAL OHIO TECHNICAL COLLEGE ADVANCED MANUFACTURING
TECHNOLOGY PROGRAM
2012-2014

Articulation credit to postsecondary programs for relevant high school courses (1) eliminates unnecessary duplication of learning and (2) saves students time and tuition in the pursuit of higher education. Recognizing the need for such agreements, Central Ohio Technical College (COTC) agrees to grant articulation credit to students completing C-TEC Robotics and Automated Manufacturing Program courses, as follows:

1. The student must be graduated from high school and must have completed the specified course(s) with a grade of A or B or C.

2. The course instructor(s) must review and complete the articulation form (see attached copy) and send it to COTC.

3. The articulated courses will be transcripted at COTC once the student registers for COTC coursework.

There will be no charge for college credit awarded through this agreement, although COTC may charge a small fee for the administration of the student’s record. For the purposes of compliance with state and regional accreditation standards, COTC reserves the right to review the credentials—including, but not limited to, college transcripts and resumes—of the instructors of articulated courses.

The administrators and faculty of the program at both levels pledge their commitment and support to continuing this relationship and to promoting these articulation opportunities to the students.

C-TEC

[Signatures and dates]

Central Ohio Technical College

[Signatures and dates]

3/5/2013 1
ARTICULATION AGREEMENT BETWEEN
C-TEC ROBOTICS AND AUTOMATED MANUFACTURING PROGRAM
AND
CENTRAL OHIO TECHNICAL COLLEGE ADVANCED MANUFACTURING
TECHNOLOGY PROGRAM
2012-2014

Instructions to Apply for College Credit

The articulation agreement between the C-TEC Robotics and Automated Manufacturing Program and Central Ohio Technical College enables high school graduates to receive college credit at COTC for selected courses upon evidence of competency in technology courses that are deemed equivalent to those in the attached list.

Instructions to the Student:

You must have an A, B, or C in the course to earn the college credit.

If you think that the courses in question might qualify for articulation credit, fill out the first part of the attached form. Take the form to your technology teacher(s), who will review the courses and, if applicable, estimate that the courses meet the criteria for the corresponding college courses listed in this agreement. The teacher(s) will make a recommendation for your receiving articulation credit by completing the form, attaching an official transcript, and sending these materials to COTC. Staff persons at COTC will review the materials and, if appropriate, grant recommended credit.

Instructions to the High School Teacher:

Please read the attached form carefully before filling it out. Students must (1) have covered competencies listed for the COTC course(s) in question and (2) have mastered these competencies in their technology courses at an A, B, or C level. Verify that each goal has been met at the appropriate level by initialing, signing, and dating the form. Please attach the student’s official transcript.

Your signature certifies that, in your estimation, the high school courses meet all articulation criteria for the indicated COTC courses and that the student has, to your knowledge, completed successfully those courses eligible for articulation. Mail the competed form to: Records and Registration, Central Ohio Technical College, 1179 University Drive, Newark, OH 43055. If you have any questions about articulation with COTC, contact the Administrative Dean for Academic Affairs at 740-364-9614.
ARTICULATION AGREEMENT BETWEEN
C-TEC ROBOTICS AND AUTOMATED MANUFACTURING PROGRAM
AND
CENTRAL OHIO TECHNICAL COLLEGE ADVANCED MANUFACTURING
TECHNOLOGY PROGRAM
2012-2014

RECOMMENDATION FORM FOR COLLEGE CREDIT

To be completed by the student:

Student Name: ________________________________________________

Address: ______________________________________________________

                     Street       City       State       Zip

Home Phone (___) ___________________ Work Phone: (___) _____________

Expected High School Graduation Date: ______________________________

                     Month       Year

I agree to permit my high school teacher(s) to provide COTC with the information on this form
and understand that articulated credit might apply only to a degree or certificate at COTC and
might not be transferrable to another college or university.

Student Signature: ______________________________________________

Date: ________________

To be completed by the high school teacher(s):

Teacher Name(s): ________________________________________________

High School Name: ______________________________________________

School Address: _________________________________________________

                     Street       City       State       Zip

School Phone Number: (___) ________________________________

As indicated by my initials next to the attached course description(s), I consider that my former
student has achieved the indicated knowledge and skills at a level of “A”, “B”, or “C”.

Teacher Signature(s): ___________________________________________

Date: ________________

Supervisor Signature: ___________________________________________

Date: ________________

Recommendation for credit for: ____________________________________

        (student name)

3/5/2013
ARTICULATION AGREEMENT BETWEEN
C-TEC ROBOTICS AND AUTOMATED MANUFACTURING PROGRAM
AND
CENTRAL OHIO TECHNICAL COLLEGE ADVANCED MANUFACTURING
TECHNOLOGY PROGRAM
2012-2014

<table>
<thead>
<tr>
<th>Letter Grade</th>
<th>Teacher's Initials</th>
<th>COTC Course Available for credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AMT-100 Principles of Machining (2 credits)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This course covers changes in machining technologies, major advancements in the machine tool field or specialty training items. The course will also offer practice in basic bench work, setup and layout for lathe and milling operations and precision measuring instruments. Other activities will include finding solutions of related problems, preparation of weekly laboratory reports and a variety of maintenance tasks necessary for the upkeep and operation of a machine shop.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMT-122 Machining-Turning (4 credits)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This course covers basic and advanced terminology, setup, operation, and daily care of conventional metal working engines and related lathes. Theory and practical skill development exercises will focus on cutting tool preparations for completing external surface machining such as straight turning, threading, chucking and tailstock operations, as well as internal surface piece-part machining operations. Accident prevention practices and procedures will be stressed throughout the course. Concepts and mathematical calculations for part geometry determination, specific lathe (machining) requirements, and the use of digital readout units will be covered. Carbide/ ceramic/diamond cutting tool material, insert, and tool holder identification and selection requirements for lathe work will be explained in detail. Process planning and Geometric Dimensioning and Tolerancing (GD&amp;T) characteristics appropriate for lathe machining will also be addressed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMT-123 Machining-Milling (4 credits)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This course covers terminology, set-up, operation and daily care of conventional milling machines. Theory and practical skill development exercises will focus on the use of conventional metal working milling machines and attachments. Accident prevention practices and procedures will be stressed throughout the course. Concepts and mathematical calculations for machining of prismatic (cube-like) features and part geometry will be covered. Process planning, documentation and Geometric Dimensioning, and Tolerancing (GD&amp;T) characteristics for milling work, cutters and insert (geometry and grade) selection, as well as cutting parameters, will be addressed.</td>
</tr>
</tbody>
</table>